Optimization of a Sequential Decision Making Problem for a Rare Disease Diagnostic Application.

Rémi Besson with Erwan Le Pennec and Stéphanie Allassonnière

École Polytechnique - 09/07/2018

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Prenatal Ultrasound Diagnostic

Prenatal Diagnosis

- ► France: three compulsory ultrasound tests during pregnancy.
- Some classical measures (e.g. trisomy 21).
- But no strict examination protocol.

Outline

Goals and Data

Diagnostic Strategy Optimization

Environment Learning

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Data at Hands

Dataset

- An expert database build from litterature (Emmanuel Spaggiari, M.D. in gynecology obstetrics).
- ▶ 81 diseases, 307 symptoms (signs visible with ultrasound):
 - Disease prevalences: $P[D = d_j]$
 - Symptom prevalences given each disease: $P[S_i = k \mid D = d_j]$.
- Database will be enriched from the future exams.

÷ id disease	÷ id symptom	probability of symptom knowing the disease
16	29	0.39
16	136	0.67
16	149	0.50
16	176	0.16
16	181	0.50
16	231	0.75

Our Goals

Medical Goals

- ► Help obstetricians by improving ultrasonic diagnostic.
- Guide a (non rare disease expert) sonographer to assess as fast as possible potential diseases.

Technical Goals

- Learn a "good" policy $\rightarrow \pi : S \in \mathbb{S} \mapsto a \in \mathbb{A}$
- State: S = {0,1,2}³⁰⁷ (presence,absence,not yet looked at) for each symptom.
- Action: $\mathbb{A} = \{1, \dots, 307\}$ next symptom.
- ► Develop the final (rather intermediate) product: Shiny app. 📱 🗠 ରେ

Problems to be Solved

Environment Learning

- We have $P[S_i \mid D]$ but we need to know $P[S_{i_1}, ..., S_{i_K} \mid D]$.
- Idea: add some expert knowledge and maximize uncertainty.

Diagnostic Strategy Optimization

- Find a policy that allows to detect the disease while minimizing the average duration.
- Idea: recast the problem as a non adversial game and find the optimal strategy.

Goals and Data

Diagnostic Strategy Optimization

Environment Learning

Diagnostic Strategy Optimization

Diagnostic Strategy Optimization.

Find a policy that allows to detect the disease while minimizing the average duration.

Measure of Performance

Number of questions before being able to diagnose a disease.

Alternative Formulations

- Trade-off: cost of misdiagnosis/cost of medical tests to perform.
- Reach the lowest uncertainty under fixed budget constraint (time, money).

Reinforcement Learning

- Sutton (98): An agent takes actions in a sequential way, receives rewards from the environment and tries to maximize his long-term (cumulative) reward.
- ► Has been applied a lot in robotics or game (Go...).

Reward Signal Design

- ► We give a -1 reward for each question posed before the diagnostic can be made and 0 afterwards.
- When should we stop and consider that we can make a diagnostic? → when the disease entropy falls below *ε*.

Value Functions and Optimization

Reward and Optimization Task

► *T* the stopping time, *r*_t the reward obtained at time *t*:

$$\mathcal{R} = \sum_{t=1}^{T} r_t$$

•
$$s_0 = (2, \ldots, 2)$$
:

$$\pi^{\star} = \operatorname*{argmax}_{\pi} \mathbb{E}_{\pi}[\mathcal{R} \mid s_{0}]$$

Value Functions

- Given a strategy π : two values functions measuring
 - the performance of the strategy starting from s

$$V_{\pi}(s) = \mathbb{E}_{\pi}[\mathcal{R}|s]$$

the performance if one forces the first action to be a

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[\mathcal{R}|s,a]$$

Dynamic Programming

Two observations

▶ We can evaluate a policy using Bellman expectation backup:

$$v_{\pi}(s) = \sum_{s'} p(s' \mid s, \pi(s))(v_{\pi}(s') + r(s, a, s'))$$

• We enhance π if we replace it by π' (policy improvement):

$$\pi'(s) = \operatorname*{argmax}_{a} Q_{\pi}(s, a)$$

= $\operatorname*{argmax}_{a} \sum_{s'} p(s' \mid s, a)(v_{\pi}(s') + r(s, a, s'))$

Dynamic Programming

$$\blacktriangleright \ \pi_0 \xrightarrow{\mathsf{E}} \mathsf{v}_{\pi_0} \xrightarrow{\mathsf{I}} \pi_1 \xrightarrow{\mathsf{E}} \mathsf{v}_{\pi_1} \xrightarrow{\mathsf{I}} \dots \xrightarrow{\mathsf{I}} \pi^\star \xrightarrow{\mathsf{E}} \mathsf{v}_{\pi^\star}.$$

► Issue: impossible to use in high dimension!
→ State dimension: 3³⁰⁷

Policy Parametrisation

Parametrization

•
$$\pi_{\theta}(s) = f_{\theta}(\Phi(s))$$
 with $\theta \in \mathbb{R}^d$.

- ► Example: f_θ depends only on P(A|s) and H(D|s) through a logit model → inspired from Breiman algorithm for decision tree optimization.
- Values functions:

$$egin{aligned} \mathcal{V}_{ heta}(s) &= \mathbb{E}_{\pi_{ heta}}[\mathcal{T}|s] \ \mathcal{Q}_{ heta}(s, a) &= \mathbb{E}_{\pi_{ heta}}[\mathcal{T}|s, a] \end{aligned}$$

Parametric Optimization

• Optimization in θ :

gradient descent, order 0 optimization...

- Issue: neither V or Q are known...
- Monte Carlo technique to estimate those quantities from game/simulation.

Action-Value Function Parametrisation

Reminder

• We "only" need to learn Q_{π^*} since:

$$\pi^{\star}(s) = \operatorname*{argmax}_{a} Q_{\pi^{\star}}(s, a)$$

Action-Value Function Look-up table

► Action-Value function satisfies the following Bellman equation:

$$Q^{\star}(s, a) = E_{s'}[\max_{a'} Q^{\star}(s', a') + r(s, a, s')]$$

Value iteration algorithm solve the Bellman equation:

$$Q_{i+1}(s,a) \leftarrow \mathsf{E}_{s'}[\max_{a'} Q_i(s',a') + r(s,a,s') \mid s,a]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶
$$Q_i \to Q^*$$
 as $i \to \infty$.

Action-Value Function Parametrisation

Deep Q-network algorithm

Represent action-value function by a deep Q-network with weights w:

$$Q(s,a) pprox Q_w(s,a)$$

Loss function:

٠

$$L_i(w_i) = E_{s,a}[(y_i - Q_{w_i}(s, a))^2]$$

where $y_i = E_{s'}[\min_{a'} Q_{w_i}(s', a') + r(s, a, s') \mid s, a]$ is the target.

Some tricks to overcome instability: experience replay, freeze target Q-network:

$$L_{i}(w_{i}) = E_{s,a,s'\sim D}[(r(s,a,s') + \min_{a'} Q_{w_{i-1}}(s',a') - Q_{w_{i}}(s,a))^{2}]$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

High-dimensional issues.

lssue

▶ DQN algorithm is not tractable for the main task: to find the best path starting from $s_0 = (2, ..., 2)$.

Dimension reduction

- Idea: Create subproblems of lower dimension.
- Learn a strategy starting from each $s_0^{(i)} = (2, ..., 2, 1, 2, ..., 2)$.
- ► Assumption: this first observed symptom is relevant (we can focus on the diseases for which this initial symptom is typical → reduce dimension).

Transfer Learning

Learn the strategy for the global task from what have been learned on subtasks: transfer learning.

Ongoing research: promising results.

Some Results

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Some Results

Figure: Evolution of the performance of the neural network during the training phase with DQN-MC. Task dimension: 10.

Figure: Evolution of the performance of the neural network during the training phase with DQN-MC. Task dimension: 26.

Outline

Goals and Data

Diagnostic Strategy Optimization

Environment Learning

Uncertainty and Entropy

Environment Learning

- We have $P[S_i \mid D]$ but we need to know $P[S_{i_1}, ..., S_{i_K} \mid D]$.
- Idea: add some expert knowledge and maximize uncertainty.

Expert knowledge

- Some symptoms can not occur simultaneously...
- You need at least a certain number of symptoms to talk about a syndrome.

Uncertainty

- General idea: choose a solution that maximize the uncertainty while respecting the constraints (probability/impossibility).
- Uncertainty measured by entropy.

MaxEnt Principle

Environment Learning

- ▶ We have $P[S_i | D]$ but we need to know $P[S_{i_1}, ..., S_{i_K} | D]$.
- ► Naive idea: $P[S_{i_1}, ..., S_{i_K} | D] = P[S_{i_1} | D] \times ... \times P[S_{i_K} | D]$ (Conditional independence)

Data and Expert Knowledge

- Conditional probabilities: $P[S_i \mid D]$
- Medical constraints: $P[S_{i_k}, S_{i_{k'}} | D] = 0...$
- Mathematical constraints: P should be a probability...

MaxEnt Principle

► Maximize the entropy of the distribution P[S_{i1}, ..., S_{ik} | D] under mathematical and medical constraints.

Numerical scheme available.

Take Away Message

- Help obstetricians by improving/systematizing ultrasonic diagnostic (MDP modeling)
- Guide a (non rare disease expert) sonographer to assess as fast as possible potential diseases (first prototype at Necker)

Technical Goals

- Build an optimized decision tree:
 - Need to learn the environment (MaxEnt and data assim.)
 - Reinforcement learning (parametrized policy and MC)
- Not yet (theoretical) guarantees.

Take Away Message

- Formalization requires a true dialog between the mathematicans and the practicians.
- Defining the performance measure (the metric goal) not always easy.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- First prototype already interesting.
- Promising direction.

Acknowledgment

Thesis Team (CMAP/Paris Descartes)

Rémi Besson, Erwan Le Pennec, Stéphanie Allassonnière

Yves Ville Team (Hôpital Necker Enfants Malades)

Julien Stirneman, Emmanuel Spaggiari

Anita Burgun Team (Paris Descartes/INSERM/Institut Imagine)

 Nicolas Garcelon, Anne-Sophie Jannot, Antoine Neuraz, Anita Burgun

References

- Bayer-Zubeck V., Dietterich T.G (2005), Integrating Learning from Examples into the Search for Diagnostic Policies Journal of Artificial Intelligence Research, Oregon.
- Breiman L., Friedman J., Stone C.J, Olshen R.A. (1984), Classification and regression trees Wadsworth Statistics/Probability, Berkeley.
- Jaynes, E.T. (1963), Information Theory and Statistical Mechanics, The Physical Review, Standford.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.A. Riedmiller (2013). Playing atari with deep reinforcement learning. CoRR.
- Sutton R.S., Barto A.G. (1998), Introduction to reinforcement learning Bradford Book, MIT Cambridge.
- K.F Tang, H.C. Kao, C.N. Chou, E.Y. Chang (2016), Inquire and Diagnose: Neural Symptom Checking Ensemble using Deep Reinforcement Learning NIPS, Barcelona