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Prenatal Ultrasound Diagnostic

Prenatal Diagnosis

» France: three compulsory ultrasound tests during pregnancy.
» Some classical measures (e.g. trisomy 21).

» But no strict examination protocol.
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Goals and Data



Data at Hands
Dataset

» An expert database build from litterature (Emmanuel
Spaggiari, M.D. in gynecology obstetrics).
» 81 diseases, 307 symptoms (signs visible with ultrasound):

» Disease prevalences: P[D = dj]
» Symptom prevalences given each disease: P[S; = k | D = dj].

» Database will be enriched from the future exams.
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Our Goals
Medical Goals

» Help obstetricians by improving ultrasonic diagnostic.
» Guide a (non rare disease expert) sonographer to assess as fast
as possible potential diseases.
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State: S = {0, 1,2}3% (presence,absence,not yet looked at)
for each symptom.

Action: A = {1,...,307} next symptom.
Develop the final (rather intermediate) product: Shiny app.
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Problems to be Solved
Environment Learning

» We have P[S; | D] but we need to know P[S;, ..., S, | D].
> ldea: add some expert knowledge and maximize uncertainty.

Diagnostic Strategy Optimization

» Find a policy that allows to detect the disease while
minimizing the average duration.

» |dea: recast the problem as a non adversial game and find the
optimal strategy.
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Diagnostic Strategy Optimization



Diagnostic Strategy Optimization

Diagnostic Strategy Optimization.
» Find a policy that allows to detect the disease while
minimizing the average duration.
Measure of Performance

» Number of questions before being able to diagnose a disease.

Alternative Formulations
» Trade-off: cost of misdiagnosis/cost of medical tests to
perform.

» Reach the lowest uncertainty under fixed budget constraint
(time, money).



Reinforcement Learning

» Sutton (98): An agent takes actions in a sequential way,
receives rewards from the environment and tries to maximize
his long-term (cumulative) reward.

» Has been applied a lot in robotics or game (Go...).
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Reward Signal Design

» We give a —1 reward for each question posed before the
diagnostic can be made and 0 afterwards.

» When should we stop and consider that we can make a
diagnostic? — when the disease entropy falls below .



Value Functions and Optimization
Reward and Optimization Task

» T the stopping time, r; the reward obtained at time t:

> 502(2,...,2):
7 = argmaxE.[R | so]
™

Value Functions

» Given a strategy m: two values functions measuring
» the performance of the strategy starting from s

Vi(s) = Ex[R]s]
» the performance if one forces the first action to be a

Qx(s,a) =E,[R|s,a]



Dynamic Programming

Two observations

» We can evaluate a policy using Bellman expectation backup:

va(s) = Y p(s' | 5.7(s))(va(s) + r(s, a,5"))

» We enhance 7 if we replace it by 7’ (policy improvement):
7'(s) = argmax Q. (s, a)
a

= argmaxz p(s" | s,a)(vx(s) + r(s,a,s))
a /
Dynamic Programming

E | E | Il 4 E
> 0 —> Vag > T1 —> Vg = oo —> T —> Vpx.

> Issue: impossible to use in high dimension!
— State dimension: 3397



Policy Parametrisation
Parametrization
> mo(s) = f(P(s)) with 6 € RY.
» Example: fy depends only on P(A|s) and H(D|s) through a

logit model — inspired from Breiman algorithm for decision
tree optimization.

» Values functions:

V(s) = Eny[T]s]
Qo(s,a) =E,,[T]s, 4]
Parametric Optimization
» Optimization in 6:
» gradient descent, order 0 optimization...
> Issue: neither V or @ are known...

» Monte Carlo technique to estimate those quantities from
game/simulation.



Action-Value Function Parametrisation

Reminder

» We "only" need to learn Q.+ since:

7*(s) = argmax Q+(s, a)
a

Action-Value Function Look-up table

» Action-Value function satisfies the following Bellman equation:
Q*(s,a) = Ey [maa)x Q*(s',d) + r(s,a,s)]
» Value iteration algorithm solve the Bellman equation:
Qi+1(s,a) « Eg [magx Qi(s',a) +r(s,a,s)|s,a]

> Qi — Q* as i — o0.



Action-Value Function Parametrisation

Deep Q-network algorithm

» Represent action-value function by a deep Q-network with
weights w:

Q(s,a) ~ Qu(s, a)
» Loss function:
Li(Wi) = Es,a[(}’i - QW;(Sv a))2]

where y; = Eg[miny Qu.(s',a') + r(s,a,s") | s, a] is the target.
» Some tricks to overcome instability: experience replay, freeze
target Q-network:

Lf(Wi) = ES,B,S’ND[(r(Sv 4, 5/) + mi,n QW,'71(5/7 a/) - QW{(Sv a))2]



High-dimensional issues.

[ssue

» DQN algorithm is not tractable for the main task: to find the
best path starting from so = (2, ...,2).

Dimension reduction
» |dea: Create subproblems of lower dimension.
» Learn a strategy starting from each séi) =(2,..,2,1,2,...,2).

» Assumption: this first observed symptom is relevant (we can
focus on the diseases for which this initial symptom is typical
— reduce dimension).

Transfer Learning

» Learn the strategy for the global task from what have been
learned on subtasks: transfer learning.

» Ongoing research: promising results.



Some Results

354 Algorithm

—® Breiman policy
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Some Results

baseline: 5.9

baseline: 11.8

Optimal policy: 4.6

Average number of questions to ask
Average number of questions to ask

0 50 ceration. 100 150 0 200 teration. 400 800
Figure: Evolution of the Figure: Evolution of the
performance of the neural performance of the neural
network during the training phase network during the training phase
with DQN-MC. Task dimension: with DQN-MC. Task dimension:

10. 26.
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Uncertainty and Entropy

Environment Learning

» We have P[S; | D] but we need to know P[S;, ..., S, | D].

» |dea: add some expert knowledge and maximize uncertainty.

Expert knowledge

» Some symptoms can not occur simultaneously...

» You need at least a certain number of symptoms to talk about
a syndrome.

Uncertainty

» General idea: choose a solution that maximize the uncertainty
while respecting the constraints (probability/impossibility).

» Uncertainty measured by entropy.



MaxEnt Principle

Environment Learning
» We have P[S; | D] but we need to know P[S;, ..., Sj, | D].
» Naive idea: P[Sj,...,Si, | D] = P[S;, | D] x ... x P[S;, | D]
(Conditional independence)
Data and Expert Knowledge

» Conditional probabilities: P[S; | D]
» Medical constraints: P[S;,,S;, | D] =0...

iyt
» Mathematical constraints: P should be a probability...

MaxEnt Principle

» Maximize the entropy of the distribution P[S;,, ..., S;, | D]
under mathematical and medical constraints.

» Numerical scheme available.



Takgeyay Hsesage

> Help obstetricians by improving/systematizing ultrasonic
diagnostic (MDP modeling)

» Guide a (non rare disease expert) sonographer to assess as fast
as possible potential diseases (first prototype at Necker)

Technical Goals

» Build an optimized decision tree:
> Need to learn the environment (MaxEnt and data assim.)
» Reinforcement learning (parametrized policy and MC)

» Not yet (theoretical) guarantees.

Take Away Message
» Formalization requires a true dialog between the
mathematicans and the practicians.
» Defining the performance measure (the metric goal) not
always easy.
» First prototype already interesting.

» Promising direction.
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