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Prenatal Ultrasound Diagnostic

Prenatal Diagnosis

I France: three compulsory ultrasound tests during pregnancy.
I Some classical measures (e.g. trisomy 21).
I But no strict examination protocol.
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Data at Hands
Dataset

I An expert database build from litterature (Emmanuel
Spaggiari, M.D. in gynecology obstetrics).

I 81 diseases, 307 symptoms (signs visible with ultrasound):
I Disease prevalences: P[D = dj ]
I Symptom prevalences given each disease: P[Si = k | D = dj ].

I Database will be enriched from the future exams.



Our Goals
Medical Goals

I Help obstetricians by improving ultrasonic diagnostic.
I Guide a (non rare disease expert) sonographer to assess as fast

as possible potential diseases.

Technical Goals
I Learn a "good" policy → π : S ∈ S 7→ a ∈ A
I State: S = {0, 1, 2}307 (presence,absence,not yet looked at)

for each symptom.
I Action: A = {1, . . . , 307} next symptom.
I Develop the final (rather intermediate) product: Shiny app.



Problems to be Solved
Environment Learning

I We have P[Si | D] but we need to know P[Si1 , ...,SiK | D].
I Idea: add some expert knowledge and maximize uncertainty.

Diagnostic Strategy Optimization

I Find a policy that allows to detect the disease while
minimizing the average duration.

I Idea: recast the problem as a non adversial game and find the
optimal strategy.
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Diagnostic Strategy Optimization

Diagnostic Strategy Optimization.

I Find a policy that allows to detect the disease while
minimizing the average duration.

Measure of Performance
I Number of questions before being able to diagnose a disease.

Alternative Formulations
I Trade-off: cost of misdiagnosis/cost of medical tests to

perform.
I Reach the lowest uncertainty under fixed budget constraint

(time, money).



Reinforcement Learning
I Sutton (98): An agent takes actions in a sequential way,

receives rewards from the environment and tries to maximize
his long-term (cumulative) reward.

I Has been applied a lot in robotics or game (Go...).

Reward Signal Design

I We give a −1 reward for each question posed before the
diagnostic can be made and 0 afterwards.

I When should we stop and consider that we can make a
diagnostic? → when the disease entropy falls below ε.



Value Functions and Optimization
Reward and Optimization Task

I T the stopping time, rt the reward obtained at time t:

R =
T∑
t=1

rt

I s0 = (2, . . . , 2):

π? = argmax
π

Eπ[R | s0]

Value Functions
I Given a strategy π: two values functions measuring

I the performance of the strategy starting from s

Vπ(s) = Eπ[R|s]

I the performance if one forces the first action to be a

Qπ(s, a) = Eπ[R|s, a]



Dynamic Programming

Two observations
I We can evaluate a policy using Bellman expectation backup:

vπ(s) =
∑
s′

p(s ′ | s, π(s))(vπ(s ′) + r(s, a, s ′))

I We enhance π if we replace it by π′ (policy improvement):

π′(s) = argmax
a

Qπ(s, a)

= argmax
a

∑
s′

p(s ′ | s, a)(vπ(s ′) + r(s, a, s ′))

Dynamic Programming

I π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ . . .
I−→ π?

E−→ vπ? .
I Issue: impossible to use in high dimension!
→ State dimension: 3307



Policy Parametrisation
Parametrization

I πθ(s) = fθ(Φ(s)) with θ ∈ Rd .
I Example: fθ depends only on P(A|s) and H(D|s) through a

logit model → inspired from Breiman algorithm for decision
tree optimization.

I Values functions:

Vθ(s) = Eπθ [T |s]

Qθ(s, a) = Eπθ [T |s, a]

Parametric Optimization

I Optimization in θ:
I gradient descent, order 0 optimization...

I Issue: neither V or Q are known...
I Monte Carlo technique to estimate those quantities from

game/simulation.



Action-Value Function Parametrisation

Reminder
I We "only" need to learn Qπ? since:

π?(s) = argmax
a

Qπ?(s, a)

Action-Value Function Look-up table

I Action-Value function satisfies the following Bellman equation:

Q?(s, a) = Es′ [max
a′

Q?(s ′, a′) + r(s, a, s ′)]

I Value iteration algorithm solve the Bellman equation:

Qi+1(s, a)← Es′ [max
a′

Qi (s
′, a′) + r(s, a, s ′) | s, a]

I Qi → Q? as i →∞.



Action-Value Function Parametrisation

Deep Q-network algorithm

I Represent action-value function by a deep Q-network with
weights w :

Q(s, a) ≈ Qw (s, a)

I Loss function:

Li (wi ) = Es,a[(yi − Qwi (s, a))2]

where yi = Es′ [mina′ Qwi (s
′, a′) + r(s, a, s ′) | s, a] is the target.

I Some tricks to overcome instability: experience replay, freeze
target Q-network:

Li (wi ) = Es,a,s′∼D [(r(s, a, s ′) + min
a′

Qwi−1(s ′, a′)−Qwi (s, a))2]

.



High-dimensional issues.
Issue

I DQN algorithm is not tractable for the main task: to find the
best path starting from s0 = (2, ..., 2).

Dimension reduction
I Idea: Create subproblems of lower dimension.
I Learn a strategy starting from each s

(i)
0 = (2, ..., 2, 1, 2, ..., 2).

I Assumption: this first observed symptom is relevant (we can
focus on the diseases for which this initial symptom is typical
→ reduce dimension).

Transfer Learning

I Learn the strategy for the global task from what have been
learned on subtasks: transfer learning.

I Ongoing research: promising results.



Some Results



Some Results

Figure: Evolution of the
performance of the neural
network during the training phase
with DQN-MC. Task dimension:
10.

Figure: Evolution of the
performance of the neural
network during the training phase
with DQN-MC. Task dimension:
26.
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Uncertainty and Entropy

Environment Learning

I We have P[Si | D] but we need to know P[Si1 , ...,SiK | D].
I Idea: add some expert knowledge and maximize uncertainty.

Expert knowledge

I Some symptoms can not occur simultaneously...
I You need at least a certain number of symptoms to talk about

a syndrome.

Uncertainty

I General idea: choose a solution that maximize the uncertainty
while respecting the constraints (probability/impossibility).

I Uncertainty measured by entropy.



MaxEnt Principle
Environment Learning

I We have P[Si | D] but we need to know P[Si1 , ...,SiK | D].

I Naive idea: P[Si1 , ...,SiK | D] = P[Si1 | D]× ...× P[SiK | D]
(Conditional independence)

Data and Expert Knowledge

I Conditional probabilities: P[Si | D]

I Medical constraints: P[Sik , Sik′ | D] = 0...
I Mathematical constraints: P should be a probability...

MaxEnt Principle

I Maximize the entropy of the distribution P[Si1 , ...,Sik | D]
under mathematical and medical constraints.

I Numerical scheme available.



Take Away Message
Medical Goals

I Help obstetricians by improving/systematizing ultrasonic
diagnostic (MDP modeling)

I Guide a (non rare disease expert) sonographer to assess as fast
as possible potential diseases (first prototype at Necker)

Technical Goals
I Build an optimized decision tree:

I Need to learn the environment (MaxEnt and data assim.)
I Reinforcement learning (parametrized policy and MC)

I Not yet (theoretical) guarantees.

Take Away Message

I Formalization requires a true dialog between the
mathematicans and the practicians.

I Defining the performance measure (the metric goal) not
always easy.

I First prototype already interesting.
I Promising direction.
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